MEM202 Engineering Mechanics - Statics Final Examination Solution

Friday, September 02, 2005
1:00 PM - 3:00 PM
I. Solve all seven problems
II. Read the problems carefully.
III. Extra credit is 5 points.
IV. Equations you may need are given on the last page.

NAME: \qquad
I.D.:

1. \qquad
2.
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
Extra credit: \qquad
Total \qquad
8. (15 Points) Determine the moment of the 610 N force shown about line CD.
Express the result in Cartesian vector form.

SOLUTION

$$
\begin{aligned}
& \vec{F}=610\left[\frac{350 \hat{\mathbf{I}}-300 \hat{\mathbf{\jmath}}-400 \hat{\mathbf{k}}}{\sqrt{(350)^{2}+(-300)^{2}+(-400)^{2}}}\right] \\
& =349.8 \hat{\mathbf{i}}-299.8 \mathbf{J}-399.8 \hat{\mathbf{K}} \mathrm{~N} \\
& \overrightarrow{\mathbf{r}}_{\mathrm{B} / \mathrm{C}}=0.300 \hat{\mathrm{j}} \mathrm{~m} \\
& \vec{n}_{\mathrm{C}}=\overrightarrow{\mathbf{r}}_{\mathrm{B} / \mathrm{C}} \times \overrightarrow{\mathrm{F}}=(0.300 \hat{\mathbf{\jmath}}) \times(349.8 \hat{\mathbf{\imath}}-299.8 \hat{\jmath}-399.8 \hat{\mathbf{k}}) \\
& =\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\jmath} & \hat{\mathbf{k}} \\
0 & 0.300 & 0 \\
349.8 & -299.8 & -399.8
\end{array}\right|=-119.94 \hat{\mathbf{\imath}}-104.94 \hat{\mathbf{k}} \mathrm{~N} \cdot \mathrm{~m} \\
& \hat{\mathbf{e}}_{\mathrm{CD}}=\frac{-350 \hat{\mathrm{i}}+300 \hat{\mathrm{\jmath}}}{\sqrt{(-350)^{2}+(300)^{2}}}=-0.7593 \hat{\mathrm{i}}+0.6508 \hat{\mathrm{j}} \\
& M_{C D}=R_{C} \cdot \hat{e}_{C D}=(-119.94 \hat{\imath}-104.94 \hat{\mathbf{k}}) \cdot(-0.7593 \hat{\mathrm{i}}+0.6508 \hat{\mathrm{\jmath}}) \\
& =91.07 \mathrm{~N} \cdot \mathrm{~m} \propto 91.1 \mathrm{~N} \cdot \mathrm{~m} \\
& \mathrm{~A}_{C D}=\mathrm{M}_{C D} \widehat{e}_{C D}=91.07(-0.7593 \hat{\mathbf{i}}+0.6508 \hat{\mathbf{\jmath}}) \\
& =-69.1 \hat{\imath}+59.3 \hat{\jmath} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
\qquad
\qquad x -y plane.
2. (10 Points) Reduce the forces shown to a wrench and locate the intersection of the wrench with the

Hint: A wrench is formed by \vec{R} and $\vec{C}_{/ /}$where $\vec{C}_{/ /}$is the vector component of \vec{C} parallel to \vec{R}. The location of a wrench, in terms of a vector $\vec{r}=x_{R} \vec{i}+y_{R} \vec{j}$ on the $x-y$ plane, can be determined by using $\vec{r} \times \vec{R}=\vec{C}_{\perp}$ where $\vec{C}_{\perp}=\vec{C}-\vec{C}_{/ /}$.

$F_{186}=83.2 \vec{i}+166.4 \vec{j} \mathrm{~N}$
$F_{118}=-100.1 \vec{j}+62.5 \vec{k} \mathrm{~N}$
$F_{160}=-99.95 \vec{i}+124.9 \vec{k} \mathrm{~N}$

$$
\begin{aligned}
& F_{118}=-100.1 \vec{j}+62.5 \vec{k} \mathrm{~N} \\
& F_{160}=-99.95 \vec{i}+124.9 \vec{k} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{A}} & =186\left[\frac{1 \hat{\mathbf{\imath}}+2 \hat{\mathbf{\jmath}}}{\sqrt{5}}\right]=83.18 \hat{\mathbf{\imath}}+166.36 \hat{\mathrm{\jmath}} \mathrm{~N} \\
\mathrm{~F}_{\mathrm{B}} & =118\left[\frac{-2 \hat{\mathbf{\jmath}}+1.25 \hat{\mathrm{k}}}{\sqrt{5.5625}}\right]+160\left[\frac{-1 \hat{\mathbf{\imath}}+1.25 \hat{\mathrm{k}}}{\sqrt{2.5625}}\right] \\
& =-99.95 \hat{\mathrm{\imath}}-100.06 \hat{\mathbf{\jmath}}+187.48 \hat{\mathbf{k}} \mathrm{~N}
\end{aligned}
$$

$$
\hat{\mathbf{R}}=\Sigma \mathbf{F}=\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}=-16.77 \hat{\mathbf{1}}+66.30 \hat{\jmath}+187.48 \hat{\mathrm{E}} \mathrm{~N}
$$

Ans.

$$
R=\sqrt{(-16.77)^{2}+(66.30)^{2}+(187.48)^{2}}=199.56 \mathrm{~N}
$$

$$
C=\Sigma M_{O}=\left(\vec{r}_{A / O} \times \vec{F}_{A}\right)+\left(\bar{r}_{B / O} \times \vec{F}_{B}\right)
$$

$$
=[(1.25 \hat{\mathbf{k}}) \times(83.18 \hat{\mathbf{\imath}}+166.36 \hat{\jmath})]
$$

$$
+[(1 \hat{\mathbf{i}}+2 \hat{\jmath}) \times(-99.95 \hat{\mathbf{i}}-100.06 \hat{\mathbf{\jmath}}+187.48 \hat{\mathbf{k}})]
$$

$$
=167.01 \hat{\mathbf{\imath}}-83.51 \hat{\jmath}+99.84 \hat{\mathbf{k}} \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\hat{e}_{\mathrm{e}}=\frac{-16.77}{199.56} \hat{\mathbf{i}}+\frac{66.30}{199.56} \hat{\mathbf{j}}+\frac{187.48}{199.56} \hat{\mathbf{k}}=-0.0840 \hat{\mathbf{i}}+0.3322 \hat{\mathbf{j}}+0.9395 \hat{\mathbf{k}}
$$

$$
\mathrm{C}_{\|}=\mathbf{C} \cdot \hat{\mathbf{e}}_{R}=(167.01 \hat{\mathbf{\imath}}-83.51 \hat{\mathbf{\jmath}}+99.84 \hat{\mathbf{k}}) \cdot(-0.0840 \hat{\mathrm{i}}+0.3322 \hat{\mathbf{\jmath}}+0.9395
$$

$$
=52.03 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\mathbf{C}_{\|}=\mathrm{C}_{\|} \hat{\mathbf{e}}_{\mathrm{R}}=52.03(-0.0840 \hat{\mathbf{i}}+0.3322 \hat{\mathbf{j}}+0.9395 \hat{\mathbf{k}})
$$

$$
=-4.371 \hat{\mathbf{\imath}}+17.28 \hat{\jmath}+48.88 \hat{\mathbf{k}} \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\mathbf{C}_{\perp}=\mathbf{C}-\mathbf{C}_{\|}=171.38 \hat{\mathbf{i}}-100.79 \hat{\mathbf{\jmath}}+50.96 \hat{\mathbf{E}} \mathrm{~N} \cdot \mathrm{n}
$$

$$
\mathbf{C}_{\perp}=\overrightarrow{\mathbf{r}} \times \mathbf{R}=\left(x_{\mathrm{R}} \hat{\mathbf{i}}+\mathrm{y}_{\mathrm{R}} \hat{\mathbf{\jmath}}\right) \times(-16.77 \hat{\mathbf{i}}+66.30 \hat{\jmath}+187.48 \hat{\mathbf{k}})
$$

$$
=187.48 y_{R} \hat{\mathrm{l}}-187.48 \mathrm{x}_{\mathrm{R}} \hat{\mathrm{~J}}+\left(66.3 \mathrm{x}_{\mathrm{R}}+16.77 \mathrm{y}_{\mathrm{R}}\right) \hat{\mathrm{k}}
$$

$$
\text { From \}: } \quad-187.48 x_{R}=-100.79 \quad x_{R}=0.5376 \mathrm{n} \propto 538 \mathrm{~mm} \quad \text { Ans. }
$$

$$
\text { From î: } \quad 187.48 y_{R}=171.38 \quad y_{R}=0.9141 \mathrm{n} \cong 914 \mathrm{~mm} \quad \text { Ans. }
$$

\qquad I.D.: \qquad
3. (15 Points) Locate the centroid (x_{c}, y_{c}) of the composite area shown.
Note: do not move the reference system.

SOLUTION

The shaded area can be divided into a rectangle, and a quarter circle, with a square removed. The centroid for the composite area is determined by listing the area, the centroid location, and the first monent for
 the individual parts in a table and applying Eqs. 5-13. Thus,

$$
\begin{aligned}
& A_{2}=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(150)^{2}=17,671 \mathrm{mn}^{2} \\
& x_{c 2}=\frac{4 r}{3 \pi}=\frac{4(150)}{3 \pi}=63.66 \mathrm{~mm} \\
& y_{c 2}=50+\frac{4 r}{3 \pi}=50+\frac{4(150)}{3 \pi}=113.66 \mathrm{mn}
\end{aligned}
$$

Part	A_{i} $\left(\mathrm{~mm}^{2}\right)$	x_{Ci} (mm)	M_{y} $\left(\mathrm{mn}^{3}\right)$	$y_{C i}$ (mn)	M_{x} $\left(\mathrm{mn}^{3}\right)$
1	7500	75	562,500	25	187,500
2	17,671	63.66	$1,124,936$	113.66	$2,008,486$
3	-5625	37.5	$-210,938$	87.5	$-492,188$
Σ	19,546		$1,476,498$		$1,703,798$

$A x_{C}=\Sigma A_{i} x_{C i}=M_{y}$

$$
x_{c}=\frac{M_{y}}{A}=\frac{1,476,498}{19,546}=75.5 \mathrm{~mm}
$$

Ans ,

$$
A y_{c}=\Sigma A_{i} y_{c 1}=M_{x}
$$

$$
y_{C}=\frac{M_{x}}{A}=\frac{1,703,798}{19,546}=87.2 \mathrm{~mm}
$$

Ans.
$X_{C}=75.7 \mathrm{~mm}, Y_{C}=87.2 \mathrm{~mm}$
\qquad I.D.: \qquad
4. (15 Points) Rod ABC is subjected to a vertical force of 200 N at C and is supported at A by a ball-and-socket joint (i.e., it can transmit force but no moment) and cables BD (parallel to y-axis) and BE (parallel to x -axis) at B . Determine the reaction force at $A(A x, A y$ and $A z)$ and forces in the two cables.
Note: you must draw free-body diagram for rod ABC.

Solution

The free body diagram of rod $A B C$ is shown on the right. Balance of forces yields
(i) $\quad \sum \bar{F}=\bar{A}+\bar{T}_{c}+\bar{T}_{B E}+\bar{T}_{B D}=0$

And balance of moments about A yield
(ii) $\sum \bar{M}_{A}=\bar{r}_{C / A} \times \bar{T}_{c}+\bar{r}_{B / A} \times\left(\bar{T}_{B E}+\bar{T}_{B D}\right)=0$

Where
(iii) $\bar{A}=A_{X} \bar{i}+A_{Y} \bar{j}+A_{Z} \bar{k}$
(iv) $\quad \bar{T}_{C}=-200 \bar{k} N$
(v) $\bar{T}_{B E}=T_{B E} \bar{i} N$
(vi) $\quad \bar{T}_{B D}=T_{B D} \bar{j} N$
(vii) $\quad \bar{r}_{C / A}=1.5\left(\frac{2.0 \bar{i}+2.0 \bar{j}-1.0 \bar{k}}{\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}}\right)=1.0 \bar{i}+1.0 \bar{j}-0.5 \bar{k}$
(viii) $\quad \bar{r}_{B / A}=3.0\left(\frac{2.0 \bar{i}+2.0 \bar{j}-1.0 \bar{k}}{\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}}\right)=2.0 \bar{i}+2.0 \bar{j}-1.0 \bar{k}$

Substituting (iii) - (vi) in (i) gives
(ix) $\quad A_{X}=-T_{B E}, A_{Y}=-T_{B D}, A_{Z}=200 N$

Substituting (vii), (viii) and (ix) in (ii) gives

$$
\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
1.0 & 1.0 & -0.5 \\
0 & 0 & -200
\end{array}\right|+\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
2.0 & 2.0 & -1.0 \\
T_{B E} & T_{B D} & 0
\end{array}\right|=\left(-200-T_{B D}\right) \bar{i}+\left(200+T_{B E}\right)+\left(2 T_{B D}-2 T_{B E}\right)
$$

Thus,

$$
A_{X}=200 \mathrm{~N}, A_{Y}=200 \mathrm{~N}, A_{Z}=200 \mathrm{~N}, T_{B E}=-200 \mathrm{~N}, T_{B D}=-200 \mathrm{~N}
$$

\qquad I.D.: \qquad
5.
a) (5 Points) Identify all zero force members in the truss shown.

GB, BF

b) (15 Points) Determine the forces in members BC, CF and EF of the truss shown.

Hint: use METHOD OF SECTIONS

SOLUTION

For this simple truss, the menber forces can be determined without solving for the support reactions.

From a free-body diagram of the part of the truss to the right of member BF:

$+G \Sigma M_{c}=-T_{E F}\left(8 \sin 30^{\circ}\right)-1500\left(8 \cos 30^{\circ}\right)=0$
$\mathrm{T}_{\mathrm{EF}}=-2598 \mathrm{lb} \cong 2600 \mathrm{lb}(\mathrm{C})$
Ans.
$+C \Sigma M_{F}=T_{B C} \cos 30^{\circ}\left(8 \sin 30^{\circ}\right)+T_{B C} \sin 30^{\circ}\left(8 \cos 30^{\circ}\right)$
$-2500\left(8 \cos 30^{\circ}\right)-1500\left(16 \cos 30^{\circ}\right)=0$
$\mathrm{T}_{\mathrm{BC}}=5500 \mathrm{lb}=5500 \mathrm{lb}(\mathrm{T})$
Ans.
$+G \Sigma M_{D}=T_{C F} \cos 30^{\circ}\left(8 \sin 30^{\circ}\right)+T_{C F} \sin 30^{\circ}\left(8 \cos 30^{\circ}\right)$
$+2.500\left(8 \cos 30^{\circ}\right)=0$
$T_{C F}=-2500 \mathrm{lb}=2500 \mathrm{lb}(\mathrm{C})$

NAME: \qquad I.D.: \qquad
6. (15 points) A three-bar frame is loaded and supported as shown. Determine the internal resisting forces and moment transmitted by:
a. Section $a a$ in bar BDF
b. Section $b b$ in bar ABC

SOLUTION

From a free-body diagram
for the complete frame:
$+G \Sigma M_{A}=C(10)-300(6)$
$-\frac{1}{2}(150)(6)(7)=0$
$\mathrm{C}=495 \mathrm{lb}=495 \mathrm{lb} \uparrow$

1
From a free-body diagran for bar ABC:
$+C \Sigma M_{A}=B_{y}(4)+495(10)=0$

$$
\mathrm{B}_{\mathrm{y}}=-1237.5 \mathrm{lb}=1237.5 \mathrm{lb} \downarrow
$$

From a free-body diagram for bar BDF:

$$
\begin{aligned}
+C \Sigma M_{D} & =B_{x}(3)-\frac{1}{2}(150)(6)(4)=0 \\
B_{x} & =6001 b=6001 b \rightarrow
\end{aligned}
$$

\qquad I.D.: \qquad
(a) From a free-body diagram of bar BDF below section aa:

$$
\begin{aligned}
+\uparrow \Sigma F_{\mathrm{n}} & =\mathrm{P}+1237.5=0 \\
\mathrm{P} & =-1237.5 \mathrm{lb}=1238 \mathrm{lb} \downarrow \quad \text { Ans. } \\
+\leftarrow \Sigma F_{\mathrm{t}} & =V=600=0 \\
V & =600 \mathrm{lb}=600 \mathrm{~b} \leftarrow \\
+C \Sigma \mathrm{H}_{\mathrm{z}} & =M+600(1.5)=0 \\
M & =-900 \mathrm{ft} \cdot 1 \mathrm{~b}=900 \mathrm{ft}+1 \mathrm{~b} \text { ? Ans. }
\end{aligned}
$$

(b) Fron a free-body diagram of bar $A B C$ to the right of section bb:

$$
\begin{aligned}
4+\Sigma \mathrm{F}_{\mathrm{n}} & =\mathrm{P}+600=0 \\
\mathrm{P} & =-600 \mathrm{lb}=600 \mathrm{lb} \rightarrow \quad \text { Ans. } \\
+\downarrow \mathrm{IF}_{\mathrm{t}} & =V+1237.5-495=0 \\
V & =-742.5 \mathrm{lb} \approx 743 \mathrm{lb} \uparrow \\
\mathrm{C}+\Sigma M_{z} & =\mathrm{N}-1237.5(2)+495(8)=0 \\
M & =-1485 \mathrm{ft} \cdot 1 \mathrm{~b}=1485 \mathrm{ft} \cdot \mathrm{lb} \text { ? } \quad \text { Ans. }
\end{aligned}
$$

\qquad
7. (15 Points) Draw complete shear and bending moment diagrams for the beam shown. Write down shear force and bending moment equations for all segments of the beam, and mark clearly on the diagram the locations and magnitudes of the maximum and minimum moments. Any method is acceptable, but you must show your solution process in detail.
SOLUTION

From a free-body diagran for the complete beam:
$+C \Sigma M_{A}=2(6)(1)-9(1.5)-21(2.5)+B(4)-5(2)(5)=0$
$\mathrm{B}=26 \mathrm{kN}$
$+G \Sigma M_{B}=2(6)(5)-A(4)+9(2.5)+21(1.5)-5(2)(1)=0$

$$
\mathrm{A}=26 \mathrm{kN}
$$

Load, shear, and moment diagrams for the beam are shown below:

\qquad I.D.: \qquad
(5 Points) Identify ALL zero forces members in each truss shown.

Truss	Zero-force members
	$\begin{aligned} & \text { Joint } D \Rightarrow D F=0 \\ & \text { Joint } F \Rightarrow C F=0 \\ & \text { Joint } G \leftrightharpoons C G=0 \end{aligned}$
	$\begin{aligned} & \text { Joint } H \Rightarrow F H=0 \\ & \text { Joint } F \Rightarrow F I=0 \\ & \text { Joint } I \Rightarrow E I=0 \\ & \text { Joint } E \Rightarrow E J=0 \\ & \text { Joint } L \Rightarrow B L F=0 \\ & \text { Joint } B \Rightarrow B K=0 \\ & \text { Joint } K \Rightarrow C K=0 \end{aligned}$
	$\begin{aligned} & \text { Joint } B \Rightarrow A B=B C=0 \\ & \text { Joint } D \Rightarrow C D=D E=0 \\ & \text { Joint } H \Rightarrow H I=0 \\ & \text { Joint } I \Rightarrow G I=0 \end{aligned}$

\qquad I.D.: \qquad

Equations you may need:
a. Law of sine and law of cosine:

b. Products of vectors:

Given two vectors $\vec{A}=A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k}$ and $\vec{B}=B_{x} \vec{i}+B_{y} \vec{j}+B_{z} \vec{k}$:

- The dot product of the two vectors is

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=|A \| B| \cos (\text { angle between } \vec{A} \text { and } \vec{B})
$$

- The cross product of the two vectors is

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left(A_{y} B_{z}-A_{z} B_{y}\right) \vec{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \vec{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \vec{k}
$$

NOTE:
c. A vector can be expressed either in terms of its magnitude and direction, i.e., $\vec{A}=|A| \vec{e}_{A}$, or in terms of its Cartesian components, i.e., $\vec{A}=A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k}$, where

$$
|A|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \quad \vec{e}_{A}=\frac{A_{x}}{A} \vec{i}+\frac{A_{y}}{A} \vec{j}+\frac{A_{z}}{A} \vec{k}
$$

d. Centroid of a quarter circle:

$$
\begin{aligned}
& x_{c}=\frac{4 r}{3 \pi} \\
& y_{c}=\frac{4 r}{3 \pi}
\end{aligned}
$$

\qquad
\qquad

